完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Jyh-Yeongen_US
dc.contributor.authorLin, Yang-Yinen_US
dc.contributor.authorHan, Ming-Fengen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:20:29Z-
dc.date.available2014-12-08T15:20:29Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4244-7317-5en_US
dc.identifier.issn1098-7584en_US
dc.identifier.urihttp://hdl.handle.net/11536/14584-
dc.description.abstractIn this paper, the Functional-Link based Interval Type-2 Compensatory Fuzzy Neural Network (FLIT2CFNN) is a six-layer structure, which combines compensatory fuzzy reasoning method, and the consequent part is combined the proposed functional-link neural network with interval weights. The compensatory fuzzy reasoning method uses adaptive fuzzy operations of neuro-fuzzy systems that can make the fuzzy logic system more adaptive and effective. Initially, there is no rule in the FLIT2CFNN. A FLIT2CFNN is constructed using concurrent structure and parameter learning. The advantages of this learning algorithm are that it converges quickly and the obtained fuzzy rules are more precise. All of the antecedent part parameters and compensatory degree values are learned by gradient descent algorithm. Several simulation results show that the FLIT2CFNN achieves better performance than other feedforword type-1 and type-2 FNNs.en_US
dc.language.isoen_USen_US
dc.subjecttype-2 fuzzy systemsen_US
dc.subjectcompensatory operationen_US
dc.subjectstructure learningen_US
dc.subjecton-line fuzzy clusteringen_US
dc.titleA Functional-Link based Interval Type-2 Compensatory Fuzzy Neural Network for Nonlinear System modelingen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011)en_US
dc.citation.spage939en_US
dc.citation.epage943en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000295224300139-
顯示於類別:會議論文