完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSong, Kai-Taien_US
dc.contributor.authorWu, Cheng-Heien_US
dc.contributor.authorJiang, Sin-Yien_US
dc.date.accessioned2018-08-21T05:54:23Z-
dc.date.available2018-08-21T05:54:23Z-
dc.date.issued2017-09-01en_US
dc.identifier.issn0921-0296en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10846-017-0501-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/145875-
dc.description.abstractThis paper presents a CAD-based six-degrees-of-freedom (6-DoF) pose estimation design for random bin picking for multiple objects. A virtual camera generates a point cloud database for the objects using their 3D CAD models. To reduce the computational time of 3D pose estimation, a voxel grid filter reduces the number of points for the 3D cloud of the objects. A voting scheme is used for object recognition and to estimate the 6-DoF pose for different objects. An outlier filter filters out badly matching poses so that the robot arm always picks up the upper object in the bin, which increases the success rate. In a computer simulation using a synthetic scene, the average recognition rate is 97.81 % for three different objects with various poses. A series of experiments have been conducted to validate the proposed method using a Kuka robot arm. The average recognition rate for three objects is 92.39 % and the picking success rate is 89.67 %.en_US
dc.language.isoen_USen_US
dc.subjectIndustrial roboten_US
dc.subjectRandom bin pickingen_US
dc.subject6-DoF pose estimationen_US
dc.titleCAD-based Pose Estimation Design for Random Bin Picking using a RGB-D Cameraen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10846-017-0501-1en_US
dc.identifier.journalJOURNAL OF INTELLIGENT & ROBOTIC SYSTEMSen_US
dc.citation.volume87en_US
dc.citation.spage455en_US
dc.citation.epage470en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000407056000005en_US
顯示於類別:期刊論文