完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSathipati, Srinivasulu Yerukalaen_US
dc.contributor.authorHo, Shinn-Yingen_US
dc.date.accessioned2019-04-03T06:43:09Z-
dc.date.available2019-04-03T06:43:09Z-
dc.date.issued2017-08-08en_US
dc.identifier.issn2045-2322en_US
dc.identifier.urihttp://dx.doi.org/10.1038/s41598-017-07739-yen_US
dc.identifier.urihttp://hdl.handle.net/11536/145881-
dc.description.abstractLung adenocarcinoma is a multifactorial disease. MicroRNA (miRNA) expression profiles are extensively used for discovering potential theranostic biomarkers of lung cancer. This work proposes an optimized support vector regression (SVR) method called SVR-LUAD to simultaneously identify a set of miRNAs referred to the miRNA signature for estimating the survival time of lung adenocarcinoma patients using their miRNA expression profiles. SVR-LUAD uses an inheritable bi-objective combinatorial genetic algorithm to identify a small set of informative miRNAs cooperating with SVR by maximizing estimation accuracy. SVR-LUAD identified 18 out of 332 miRNAs using 10-fold cross-validation and achieved a correlation coefficient of 0.88 +/- 0.01 and mean absolute error of 0.56 +/- 0.03 year between real and estimated survival time. SVR-LUAD performs well compared to some well-recognized regression methods. The miRNA signature consists of the 18 miRNAs which strongly correlates with lung adenocarcinoma: hsa-let-7f-1, hsa-miR-16-1, hsa-miR-152, hsa-miR-217, hsa-miR-18a, hsa-miR- 193b, hsa-miR-3136, hsa-let-7g, hsa-miR-155, hsa-miR-3199-1, hsa-miR-219-2, hsa-miR-1254, hsa-miR-1291, hsa-miR-192, hsa-miR-3653, hsa-miR-3934, hsa-miR-342, and hsa-miR-141. Gene ontology annotation and pathway analysis of the miRNA signature revealed its biological significance in cancer and cellular pathways. This miRNA signature could aid in the development of novel therapeutic approaches to the treatment of lung adenocarcinoma.en_US
dc.language.isoen_USen_US
dc.titleIdentifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profilesen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41598-017-07739-yen_US
dc.identifier.journalSCIENTIFIC REPORTSen_US
dc.citation.volume7en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000407180200008en_US
dc.citation.woscount4en_US
顯示於類別:期刊論文


文件中的檔案:

  1. a1a81f9e8eaaa16309007f9e13ce060d.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。