Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Yueh-Chengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorShieh, Shih-Fengen_US
dc.date.accessioned2018-08-21T05:54:26Z-
dc.date.available2018-08-21T05:54:26Z-
dc.date.issued2017-10-15en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2017.06.005en_US
dc.identifier.urihttp://hdl.handle.net/11536/145957-
dc.description.abstractThis paper is the second part of [15]. Taking advantage of the special structure and properties of the Hamiltonian matrix, we apply a symplectically similar transformation introduced by [18] to reduce H to a Hamiltonian Jordan canonical form J. The asymptotic analysis of the structure-preserving flows and RDEs is studied by using e(Jt). The convergence of the SDA as well as its rate can thus result from the study of the structure preserving flows. A complete asymptotic dynamics of the SDA is investigated, including the linear and quadratic convergence studied in the literature [3,12,13]. (C) 2017 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectMatrix equationsen_US
dc.subjectStructure-preserving doubling algorithmsen_US
dc.subjectMatrix Riccati differential equationsen_US
dc.subjectStructure-preserving flowsen_US
dc.subjectConvergence ratesen_US
dc.subjectSymplectic pairsen_US
dc.titleThe asymptotic analysis of the structure-preserving doubling algorithmsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2017.06.005en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume531en_US
dc.citation.spage318en_US
dc.citation.epage355en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000408185800020en_US
Appears in Collections:Articles