完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Judy P.en_US
dc.contributor.authorGuan, Pai-Chenen_US
dc.contributor.authorFan, Chia-Mingen_US
dc.date.accessioned2018-08-21T05:54:30Z-
dc.date.available2018-08-21T05:54:30Z-
dc.date.issued2017-07-01en_US
dc.identifier.issn1758-8251en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S175882511750065Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/146035-
dc.description.abstractThis work introduces the weighted collocation method with reproducing kernel approximation to solve the inverse Laplace equations. As the inverse problems in consideration are equipped with over-specified boundary conditions, the resulting equations yield an overdetermined system. Following our previous work, the weighted collocation method using a least-squares minimization has shown to solve the inverse Cauchy problems efficiently without using techniques such as iteration and regularization. In this work, we further consider solving the inverse problems of Laplace type and introduce the Shepard functions to deal with singularity. Numerical examples are provided to demonstrate the validity of the method.en_US
dc.language.isoen_USen_US
dc.subjectInverse Laplace equationen_US
dc.subjectsingularityen_US
dc.subjectreproducing kernel approximationen_US
dc.subjectstrong formen_US
dc.subjectcollocation methoden_US
dc.titleSolving Inverse Laplace Equation with Singularity by Weighted Reproducing Kernel Collocation Methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S175882511750065Xen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF APPLIED MECHANICSen_US
dc.citation.volume9en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000409362000004en_US
顯示於類別:期刊論文