Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, Heng Huaten_US
dc.contributor.authorWang, Liuquanen_US
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2018-08-21T05:54:33Z-
dc.date.available2018-08-21T05:54:33Z-
dc.date.issued2017-10-01en_US
dc.identifier.issn1446-7887en_US
dc.identifier.urihttp://dx.doi.org/10.1017/S1446788716000616en_US
dc.identifier.urihttp://hdl.handle.net/11536/146104-
dc.description.abstractLet c phi(k)(n) denote the number of k-colored generalized Frobenius partitions of n. Recently, new Ramanujan-type congruences associated with c phi(4)(n) were discovered. In this article, we discuss two approaches in proving such congruences using the theory of modular forms. Our methods allow us to prove congruences such as c phi(4)(14n + 6) 0 mod 7 and Seller's congruence c phi(4)(10n + 6) 0 mod 5.en_US
dc.language.isoen_USen_US
dc.subjectcongruencesen_US
dc.subjectgeneralized Frobenius partitionsen_US
dc.subjecttheta functionsen_US
dc.subjecteta-productsen_US
dc.titleCONGRUENCES MODULO 5 AND 7 FOR 4-COLORED GENERALIZED FROBENIUS PARTITIONSen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S1446788716000616en_US
dc.identifier.journalJOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETYen_US
dc.citation.volume103en_US
dc.citation.spage157en_US
dc.citation.epage176en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000411405500002en_US
Appears in Collections:Articles