Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, Heng Huat | en_US |
dc.contributor.author | Wang, Liuquan | en_US |
dc.contributor.author | Yang, Yifan | en_US |
dc.date.accessioned | 2018-08-21T05:54:33Z | - |
dc.date.available | 2018-08-21T05:54:33Z | - |
dc.date.issued | 2017-10-01 | en_US |
dc.identifier.issn | 1446-7887 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1017/S1446788716000616 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/146104 | - |
dc.description.abstract | Let c phi(k)(n) denote the number of k-colored generalized Frobenius partitions of n. Recently, new Ramanujan-type congruences associated with c phi(4)(n) were discovered. In this article, we discuss two approaches in proving such congruences using the theory of modular forms. Our methods allow us to prove congruences such as c phi(4)(14n + 6) 0 mod 7 and Seller's congruence c phi(4)(10n + 6) 0 mod 5. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | congruences | en_US |
dc.subject | generalized Frobenius partitions | en_US |
dc.subject | theta functions | en_US |
dc.subject | eta-products | en_US |
dc.title | CONGRUENCES MODULO 5 AND 7 FOR 4-COLORED GENERALIZED FROBENIUS PARTITIONS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1017/S1446788716000616 | en_US |
dc.identifier.journal | JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY | en_US |
dc.citation.volume | 103 | en_US |
dc.citation.spage | 157 | en_US |
dc.citation.epage | 176 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000411405500002 | en_US |
Appears in Collections: | Articles |