Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Chang-Hungen_US
dc.contributor.authorYu, Wan-Juen_US
dc.contributor.authorWong, Wing Hungen_US
dc.contributor.authorLee, Chen-Yien_US
dc.date.accessioned2018-08-21T05:54:34Z-
dc.date.available2018-08-21T05:54:34Z-
dc.date.issued2017-10-01en_US
dc.identifier.issn0018-9200en_US
dc.identifier.urihttp://dx.doi.org/10.1109/JSSC.2017.2715171en_US
dc.identifier.urihttp://hdl.handle.net/11536/146136-
dc.description.abstractAn energy-efficient restricted Boltzmann machine (RBM) processor (RBM-P) supporting on-chip learning and inference is proposed for machine learning and Internet of Things (IoT) applications in this paper. To train a neural network (NN) model, the RBM structure is applied to supervised and unsupervised learning, and a multi-layer NN can be constructed and initialized by stacking multiple RBMs. Featuring NN model reduction for external memory bandwidth saving, low power neuron binarizer (LPNB) with dynamic clock gating and area-efficient NN-like activation function calculators for power reduction, user-defined connection map (UDCM) for both computation time and bandwidth saving, and early stopping (ES) mechanism for learning process, the proposed system integrates 32 RBM cores with maximal 4k neurons per layer and 128 candidates per sample for machine learning applications. Implemented in 65nm CMOS technology, the proposed RBM-P chip costs 2.2 M gates and 128 kB SRAM with 8.8 mm(2) area. Operated at 1.2 V and 210 MHz, this chip achieves 7.53G neuron weights (NWs) and 11.63G NWs per second with 41.3 and 26.7 pJ per NW for learning and inference, respectively.en_US
dc.language.isoen_USen_US
dc.subjectLow-power designen_US
dc.subjectmachine learningen_US
dc.subjectmemory bandwidth reductionen_US
dc.subjectnon-linear functionsen_US
dc.subjectrestricted Boltzmann machine (RBM)en_US
dc.titleA 41.3/26.7 pJ per Neuron Weight RBM Processor Supporting On-Chip Learning/Inference for IoT Applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSSC.2017.2715171en_US
dc.identifier.journalIEEE JOURNAL OF SOLID-STATE CIRCUITSen_US
dc.citation.volume52en_US
dc.citation.spage2601en_US
dc.citation.epage2612en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000411835400009en_US
Appears in Collections:Articles