完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Kuen-Hanen_US
dc.contributor.authorWang, Yau-Shianen_US
dc.contributor.authorKuo, Hsuan-Yuen_US
dc.contributor.authorTsai, Jui-Yien_US
dc.contributor.authorChang, Ching-Chihen_US
dc.contributor.authorHung, Hui-Juen_US
dc.contributor.authorShuai, Hong-Hanen_US
dc.date.accessioned2018-08-21T05:56:24Z-
dc.date.available2018-08-21T05:56:24Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn2376-6816en_US
dc.identifier.urihttp://hdl.handle.net/11536/146166-
dc.description.abstractWith the convenience and popularity of Internet, the sales on e-commerce platforms have grown significantly. This exponential growth generates massive chunks of data, which provides the opportunity to utilize the historical data for predicting the customers' behaviors and can thus offer better services. One of the major tasks is to correctly estimate the coming sales of products since the e-retailers can reserve the products in a smart way. However, even with massive data, it is still challenging to estimate the sale amount of each product due to 1) the complicated language structures, 2) difficulties in integrating the features, and 3) missing values. To address these issues, we propose a framework for predicting the sales, which contains two phases: 1) feature extraction from product attributes and reviews, and 2) tensor decomposition for multi-source learning. The experimental results show that our framework outperforms baselines by 73%.en_US
dc.language.isoen_USen_US
dc.subjectMachine learningen_US
dc.subjectnatural language processingen_US
dc.subjecttensor decompositionen_US
dc.titleMulti-Source Learning for Sales Predictionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI)en_US
dc.citation.spage148en_US
dc.citation.epage153en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000434087700034en_US
顯示於類別:會議論文