Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Yi-Chiaen_US
dc.contributor.authorLee, Ming-Yien_US
dc.contributor.authorLi, Yimingen_US
dc.contributor.authorSamukawa, Seijien_US
dc.date.accessioned2018-08-21T05:56:25Z-
dc.date.available2018-08-21T05:56:25Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn1944-9399en_US
dc.identifier.urihttp://hdl.handle.net/11536/146177-
dc.description.abstractBy simultaneously considering the enhancement of quantum confinement on the effective bandgap and minimum transition energy, the silicon (Si)! silicon carbide (SiC) quantum dot superlattice (SiC-QDSL) with aluminum oxide (A1203-QDSL) passivation layer shows the high short-circuit current (J,) of 4.77 mA/cm(2) in theoretical, which agrees with the J, of 4.75 mA/cm(2) obtained in the experiment under an AM1.5 and one sun illumination. Moreover, the reduction of efficiency in an ultra-dense QD configuration can be ameliorated by exploiting the Al2O3 passivation layer. As the result, a high conversion efficiency of 16.3% is optimized by using the QD geometry from experiment and an inter-dot spacing of 0.3 nm.en_US
dc.language.isoen_USen_US
dc.subjectMinibandsen_US
dc.subjectDensity of Statesen_US
dc.subjectSuperlatticeen_US
dc.subjectSi/SiC Quantum doten_US
dc.subjectSolar cellen_US
dc.subjectLayer distanceen_US
dc.subjectConversion efficiencyen_US
dc.subjectMultilayeren_US
dc.titleDesign and Simulation of Si/SiC Quantum Dot Superlattice Solar Cells with Al2O3 Passivation Layeren_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO)en_US
dc.citation.spage341en_US
dc.citation.epage344en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000434647500078en_US
Appears in Collections:Conferences Paper