完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSu, Miin-Tsairen_US
dc.contributor.authorChen, Cheng-Hungen_US
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:20:31Z-
dc.date.available2014-12-08T15:20:31Z-
dc.date.issued2011-12-01en_US
dc.identifier.issn1568-4946en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.asoc.2011.06.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/14618-
dc.description.abstractThis study proposes a Rule-Based Symbiotic MOdified Differential Evolution (RSMODE) for Self-Organizing Neuro-Fuzzy Systems (SONFS). The RSMODE adopts a multi-subpopulation scheme that uses each individual represents a single fuzzy rule and each individual in each subpopulation evolves separately. The proposed RSMODE learning algorithm consists of structure learning and parameter learning for the SONFS model. The structure learning can determine whether or not to generate a new rule-based subpopulation which satisfies the fuzzy partition of input variables using the entropy measure. The parameter learning combines two strategies including a subpopulation symbiotic evolution and a modified differential evolution. The RSMODE can automatically generate initial subpopulation and each individual in each subpopulation evolves separately using a modified differential evolution. Finally, the proposed method is applied in various simulations. Results of this study demonstrate the effectiveness of the proposed RSMODE learning algorithm. (C) 2011 Elsevier B. V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNeuro-fuzzy systemsen_US
dc.subjectSymbiotic evolutionen_US
dc.subjectDifferential evolutionen_US
dc.subjectEntropy measureen_US
dc.subjectControlen_US
dc.titleA Rule-Based Symbiotic MOdified Differential Evolution for Self-Organizing Neuro-Fuzzy Systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.asoc.2011.06.015en_US
dc.identifier.journalAPPLIED SOFT COMPUTINGen_US
dc.citation.volume11en_US
dc.citation.issue8en_US
dc.citation.spage4847en_US
dc.citation.epage4858en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000296539700039-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000296539700039.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。