完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Wei-Chenen_US
dc.contributor.authorChiu, Hsiao-Tingen_US
dc.contributor.authorGau, Rung-Hungen_US
dc.date.accessioned2018-08-21T05:56:27Z-
dc.date.available2018-08-21T05:56:27Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1525-3511en_US
dc.identifier.urihttp://hdl.handle.net/11536/146212-
dc.description.abstractIn this paper, we propose novel algorithms of beamforming training for millimeter wave wireless communication systems. Instead of searching the whole codebook organized as a binary tree, we propose using Bayesian tree search algorithms to reduce the average delay of beamforming training. In addition, we design algorithms that derive an optimal threshold for the proposed opportunistic one-threshold tree search algorithm and an optimal pair of thresholds for the proposed opportunistic two-threshold tree search algorithm. Furthermore, we propose using quantization to efficiently calculate the likelihood ratio in the proposed opportunistic tree search algorithms. Our simulation results show that the proposed algorithms could significantly reduce the average delay of beamforming training.en_US
dc.language.isoen_USen_US
dc.subjectmillimeter wave wireless communicationen_US
dc.subjectbeamforming trainingen_US
dc.subjectstatistical detection theoryen_US
dc.subjecttree searchen_US
dc.titleBayesian Tree Search for Beamforming Training in Millimeter Wave Wireless Communication Systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC)en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000435542400007en_US
顯示於類別:會議論文