Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Chin-Weien_US
dc.contributor.authorLiu, Simingen_US
dc.contributor.authorLu, Fengen_US
dc.contributor.authorChow, Chi-Waien_US
dc.contributor.authorYeh, Chien-Hungen_US
dc.contributor.authorChang, Gee-Kungen_US
dc.date.accessioned2018-08-21T05:56:28Z-
dc.date.available2018-08-21T05:56:28Z-
dc.date.issued2018-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/146225-
dc.description.abstractAn accurate, low-cost indoor visible light positioning system utilizing machine learning technique is proposed and experimentally demonstrated. The average position resolution of the system can achieve 3.65 cm with height tolerance range of 15 cm.en_US
dc.language.isoen_USen_US
dc.titleAccurate Indoor Visible Light Positioning System utilizing Machine Learning Technique with Height Toleranceen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC)en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000437286300113en_US
Appears in Collections:Conferences Paper