完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiao, Yuan Fuen_US
dc.contributor.authorYang, Yh-Heren_US
dc.contributor.authorHsu, Chi-Huien_US
dc.contributor.authorLee, Cheng-Changen_US
dc.contributor.authorZeng, Jing-Tengen_US
dc.date.accessioned2018-08-21T05:56:29Z-
dc.date.available2018-08-21T05:56:29Z-
dc.date.issued2007-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/146253-
dc.description.abstractIn this paper a reference model weighting (RMW) method is proposed for fast hidden Markov model (HMM) adaptation which aims to use only one input test utterance to online estimate the characteristic of the unknown test noisy environment. The idea of RMW is to first collect a set of reference HMMs in the training phase to represent the space of noisy environments, and then synthesize a suitable HMM for the unknown test noisy environment by interpolating the set of reference HMMs. Noisy environment mismatch can hence be efficiently compensated. The proposed method was evaluated on the multi-condition training task of Aurora2 corpus. Experimental results showed that the proposed RMW approach outperformed both the histogram equalization (HEQ) method and the distributed speech recognition (DSR) standard ES 202 212 proposed by European Telecommunications Standards Institute (ETSI).en_US
dc.language.isoen_USen_US
dc.titleA Reference Model Weighting-based Method for Robust Speech Recognitionen_US
dc.typeProceedings Paperen_US
dc.identifier.journalINTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4en_US
dc.citation.spage2916en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000269998601357en_US
顯示於類別:會議論文