完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chih-Minen_US
dc.contributor.authorHsu, Chun-Feien_US
dc.contributor.authorChung, I-Fangen_US
dc.date.accessioned2018-08-21T05:56:31Z-
dc.date.available2018-08-21T05:56:31Z-
dc.date.issued2006-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/146300-
dc.description.abstractThis papers proposes an adaptive backstepping tracking control (ABTC) via self-organizing fuzzy neural network (SOFNN) approach. The proposed ABTC system is comprised of a backstepping tracking controller and an L, controller. The backstepping tracking controller containing a SOFNN identifier is the principal controller, and the L, controller is designed to achieve a tracking performance with desired attenuation level. The SOFNN identifier is used to online estimate the system dynamics with structure and parameter learning. Finally, the proposed ABTC is applied to control a chaotic dynamic system. The simulation results verify that the proposed ABTC system can achieve favorable tracking performance by incorporating of neural network approach and adaptive backstepping control technique.en_US
dc.language.isoen_USen_US
dc.subjectadaptive controlen_US
dc.subjectbackstepping controlen_US
dc.subjectrobust controlen_US
dc.subjectrule generationen_US
dc.subjectrule eliminationen_US
dc.titleAdaptive backstepping tracking control using self-organizing fuzzy neural networken_US
dc.typeProceedings Paperen_US
dc.identifier.journalIMECS 2006: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTSen_US
dc.citation.spage54en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000241357500011en_US
顯示於類別:會議論文