完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Po-Mingen_US
dc.contributor.authorTeng, Yunen_US
dc.contributor.authorHsiao, Tzu-Chienen_US
dc.date.accessioned2018-08-21T05:56:36Z-
dc.date.available2018-08-21T05:56:36Z-
dc.date.issued2012-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/146403-
dc.description.abstractAffective image classification problem is a problem aims on classifying images according to their affective characteristics of inducing human emotions. This paper extends the discrete state classification problem into a continuous function approximation problem by applying the experimental paradigm of dimensional emotion model. The Extended Classifier System for Function Approximation (XCSF) was applied to the problem and the results suggest that it outperforms linear regression (LR) in accomplishing this task. The obtained results also indicate that without using content based features of the images, the effects of individual difference can be relatively small.en_US
dc.language.isoen_USen_US
dc.subjectExtended Classifier Systemen_US
dc.subjectAffective Pictureen_US
dc.subjectSelf-Assessment Manikinen_US
dc.titleXCSF for Prediction on Emotion Induced by Image Based on Dimensional Theory of Emotionen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12)en_US
dc.citation.spage375en_US
dc.citation.epage382en_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000394287200050en_US
顯示於類別:會議論文