Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, Chen-Yuen_US
dc.contributor.authorSiniscalchi, Sabato Marcoen_US
dc.contributor.authorChen, Sin-Horngen_US
dc.contributor.authorLee, Chin-Huien_US
dc.date.accessioned2018-08-21T05:56:37Z-
dc.date.available2018-08-21T05:56:37Z-
dc.date.issued2013-01-01en_US
dc.identifier.issn2308-457Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/146414-
dc.description.abstractThis paper presents a knowledge integration framework to improve performance in large vocabulary continuous speech recognition. Two types of knowledge sources, manner attribute and prosodic structure, are incorporated. For manner of articulation, six attribute detectors trained with an American English corpus (WSJO) are utilized to rescore hypothesized phones in word lattices obtained by a baseline ASR system. For the prosodic structure, models trained with an unsupervised joint prosody labeling and modeling (PLM) technique using WSJO are used in lattice rescoring. Experimental results on the American English WSJ word recognition task of the Nov92 test set show that the proposed approach significantly outperforms the baseline system that does not use articulatory and prosodic information. The results also demonstrate the effectiveness and usefulness of the PLM technique in constructing prosodic models for American English ASR.en_US
dc.language.isoen_USen_US
dc.subjectLVCSRen_US
dc.subjectknowledge-based systemen_US
dc.subjectprosody labeling/modelingen_US
dc.subjectattribute detectoren_US
dc.titleKnowledge Integration for Improving Performance in LVCSRen_US
dc.typeProceedings Paperen_US
dc.identifier.journal14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5en_US
dc.citation.spage1785en_US
dc.citation.epage1789en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000395050000373en_US
Appears in Collections:Conferences Paper