完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorChang, Ying-Lanen_US
dc.date.accessioned2018-08-21T05:56:37Z-
dc.date.available2018-08-21T05:56:37Z-
dc.date.issued2013-01-01en_US
dc.identifier.issn2308-457Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/146415-
dc.description.abstractThis paper presents a nonparametric interpretation for modem language model based on the hierarchical Pitman-Yor and Dirichlet (HPYD) process. We propose the HPYD language model (HPYD-LM) which flexibly conducts backoff smoothing and topic clustering through Bayesian nonparametric learning. The nonparametric priors of backoff n-grams and latent topics are tightly coupled in a compound process. A hybrid probability measure is drawn to build the smoothed topic-based LM. The model structure is automatically determined from training data. A new Chinese restaurant scenario is proposed to implement HPYD-LM via Gibbs sampling. This process reflects the power-law property and extracts the semantic topics from natural language. The superiority of HPYD-LM to the related LMs is demonstrated by the experiments on different corpora in terms of perplexity and word error rate.en_US
dc.language.isoen_USen_US
dc.subjectlanguage modelen_US
dc.subjectbackoff modelen_US
dc.subjecttopic modelen_US
dc.subjectBayesian learningen_US
dc.titleHierarchical Pitman-Yor and Dirichlet Process for Language Modelen_US
dc.typeProceedings Paperen_US
dc.identifier.journal14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5en_US
dc.citation.spage2211en_US
dc.citation.epage2215en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000395050000467en_US
顯示於類別:會議論文