完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Po-Kaien_US
dc.contributor.authorHsu, Chung-Chienen_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2018-08-21T05:56:37Z-
dc.date.available2018-08-21T05:56:37Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn2308-457Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/146420-
dc.description.abstractThis paper proposes a new Bayesian nonnegative matrix factorization (NMF) for speech and music separation. We introduce the Poisson likelihood for NMF approximation and the exponential prior distributions for the factorized basis matrix and weight matrix. A variational Bayesian (VB) EM algorithm is developed to implement an efficient solution to variational parameters and model parameters for Bayesian NMF. Importantly, the exponential prior parameter is used to control the sparseness in basis representation. The variational lower bound in VB-EM procedure is derived as an objective to conduct adaptive basis selection for different mixed signals. The experiments on single-channel speech/music separation show that the adaptive basis representation in Bayesian NMF via model selection performs better than the NMF with the fixed number of bases in terms of signal-to-distortion ratio.en_US
dc.language.isoen_USen_US
dc.subjectnonnegative matrix factorizationen_US
dc.subjectmodel selectionen_US
dc.subjectBayesian learningen_US
dc.subjectsource separationen_US
dc.titleBayesian Factorization and Selection for Speech and Music Separationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4en_US
dc.citation.spage998en_US
dc.citation.epage1002en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000395050100203en_US
顯示於類別:會議論文