Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chun-Chengen_US
dc.contributor.authorKang, Jia-Rongen_US
dc.contributor.authorChen, Jyun-Yuen_US
dc.contributor.authorChen, Chien-Liangen_US
dc.date.accessioned2018-08-21T05:56:38Z-
dc.date.available2018-08-21T05:56:38Z-
dc.date.issued2013-01-01en_US
dc.identifier.issn2157-3611en_US
dc.identifier.urihttp://hdl.handle.net/11536/146436-
dc.description.abstractDetection of hierarchical community structures is one of the most crucial tasks for analyzing complicated social networks. In a hierarchical community structure, the super node at a higher level represents a nested structure so that the relationship of subcommunities in a community can be observed. Most of the previous works focused on designing metaheuristics for detecting hierarchical community structures, which may be computationally efficient, but cannot always guarantee the community partition optimality. Hence, this paper proposes an integer linear programming model for detecting the hierarchical community structure in social networks, which takes into account the number of levels and the limit of community size of each level. Our experimental results show that our model can find a reasonable hierarchical community structure, where the interaction between communities at different levels can be comprehended more clearly.en_US
dc.language.isoen_USen_US
dc.subjectSocial networken_US
dc.subjectcommunity detectionen_US
dc.subjecthierarchical community structureen_US
dc.subjectinteger programmingen_US
dc.titleDetecting Hierarchical Community Structures in Social Networks Using Integer Linear Programmingen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM 2013)en_US
dc.citation.spage1136en_US
dc.citation.epage1140en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000395631500226en_US
Appears in Collections:Conferences Paper