Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Bore-Kuenen_US
dc.contributor.authorHsu, Chen-Feien_US
dc.contributor.authorChen, Guan-Mingen_US
dc.contributor.authorLee, Tsu-Tianen_US
dc.date.accessioned2018-08-21T05:56:39Z-
dc.date.available2018-08-21T05:56:39Z-
dc.date.issued2007-01-01en_US
dc.identifier.issn2078-0958en_US
dc.identifier.urihttp://hdl.handle.net/11536/146467-
dc.description.abstractThis paper proposes a proportional-integral-derivative (PID)-learning-type adaptive fuzzy controller (AFC) for chaotic Duffing dynamic systems. The proposed PID-learning-type AFC is comprised of a fuzzy controller and a robust controller. The fuzzy controller is designed to mimic an ideal controller and the robust controller is designed to dispel the effect of the approximation error between the fuzzy controller and the ideal controller. All the control parameters are on-line tuned in the sense of Lyapunov theorem, thus the stability of the system can be guaranteed. Finally, a comparison between a conventional AFC and the proposed PID-learning-type AFC is presented. Simulation results verify that the proposed PID-learning-type AFC can achieve better tracking performance and faster tracking error convergence than the conventional AFC for chaotic Duffing dynamic systems.en_US
dc.language.isoen_USen_US
dc.subjectadaptive controlen_US
dc.subjectfuzzy controlen_US
dc.subjectLyapunov stability theoremen_US
dc.titleAdaptive fuzzy control using PID-type learning algorithmen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIMECS 2007: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND IIen_US
dc.citation.spage1609en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000246800601078en_US
Appears in Collections:Conferences Paper