Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartin, Sebastienen_US
dc.contributor.authorChoi, Charles T. M.en_US
dc.date.accessioned2018-08-21T05:56:41Z-
dc.date.available2018-08-21T05:56:41Z-
dc.date.issued2016-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/146505-
dc.description.abstractInverse boundary problem are usually solved with a finite element model, with either limited accuracy or huge computation resources. Using a fine mesh results in a computationally demanding task, but when the region of interest is known, when one can easily locally refine the model, aiming for greater local accuracy. In this paper, a novel approach uses artificial neural network to estimate the location of the region of interest and refine this region before solving the inverse problem. The idea is illustrated by solving the electrical impedance tomography inverse problem. Result shows that the proposed method increases the accuracy without significantly affecting the computation resources necessary to solve the inverse problem.en_US
dc.language.isoen_USen_US
dc.subjectAdaptive Mesh Refinementen_US
dc.subjectArtificial Neural Networken_US
dc.subjectElectrical Impedance Tomographyen_US
dc.subjectFinite Element Methoden_US
dc.titleA Mesh-Refinement Method Based on Artificial Neural Networks for Electrical Impedance Tomographyen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC)en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000399460300297en_US
Appears in Collections:Conferences Paper