完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Cheng-Hsuanen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorHo, Hsin-Huaen_US
dc.date.accessioned2018-08-21T05:56:41Z-
dc.date.available2018-08-21T05:56:41Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn2376-6816en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TAAI.2010.46en_US
dc.identifier.urihttp://hdl.handle.net/11536/146517-
dc.description.abstractSupport vector machine (SVM) is one of the most powerful techniques for supervised classification. However, the performances of SVMs are based on choosing the proper kernel functions or proper parameters of a kernel function. It is extremely time consuming by applying the k-fold cross-validation (CV) to choose the almost best parameter. Nevertheless, the searching range and fineness of the grid method should be determined in advance. In this paper, an automatic method for selecting the parameter of the normalized kernel function is proposed. In the experimental results, it costs very little time than k-fold cross-validation for selecting the parameter by our proposed method. Moreover, the corresponding SVMs can obtain more accurate or at least equal performance than SVMs by applying k-fold cross-validation to determine the parameter.en_US
dc.language.isoen_USen_US
dc.subjectsupport vector machineen_US
dc.subjectSVMen_US
dc.subjectkernel methoden_US
dc.subjectoptimal kernelen_US
dc.subjectnormalized kernelen_US
dc.titleAn Automatic Method for Selecting the Parameter of the Normalized Kernel Function to Support Vector Machinesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/TAAI.2010.46en_US
dc.identifier.journalINTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010)en_US
dc.citation.spage226en_US
dc.citation.epage232en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000399726300035en_US
顯示於類別:會議論文