完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, I-Lingen_US
dc.contributor.authorPai, Kai-Chihen_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorLi, Cheng-Hsuanen_US
dc.date.accessioned2018-08-21T05:56:41Z-
dc.date.available2018-08-21T05:56:41Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn2376-6816en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TAAI.2010.60en_US
dc.identifier.urihttp://hdl.handle.net/11536/146518-
dc.description.abstractOne of popular and simple pattern classification algorithms is the k-nearest neighbor rule. However, it often fails to work well when patterns of different classes overlap in some regions in the feature space. To overcome this problem, many researches strive for developing various adaptive or discriminatory metrics to improve its performance for classification, recently. In this paper, we proposed a simple adaptive nearest neighbor rule on distance measure for two objects. First one is to separate the overlapping data, and the second one is to avoid the influence of outliers. From the experimental results, our method is robust for the choice of the number of k and outperforms than k-nearest neighbor classifier.en_US
dc.language.isoen_USen_US
dc.subjectNearest neighbor ruleen_US
dc.subjectPattern classificationen_US
dc.subjectAdaptive distance measureen_US
dc.titleAn Adaptive Rule Based on Unknown Pattern for Improving K-Nearest Neighbor Classifieren_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/TAAI.2010.60en_US
dc.identifier.journalINTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010)en_US
dc.citation.spage331en_US
dc.citation.epage334en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000399726300050en_US
顯示於類別:會議論文