Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Chang-Hungen_US
dc.contributor.authorYU, Wan-Junen_US
dc.contributor.authorWong, Wing Hungen_US
dc.contributor.authorLee, Chen-Yien_US
dc.date.accessioned2018-08-21T05:56:43Z-
dc.date.available2018-08-21T05:56:43Z-
dc.date.issued2016-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/146556-
dc.description.abstractA restricted Boltzmann machine (RBM) processor (RBM-P) supporting on-chip learning and inference is proposed for machine learning applications in this paper. Featuring neural network (NN) model reduction for external memory bandwidth saving, low power neuron binarizer (LPNB) with dynamic clock gating and area-efficient NN-like activation function calculators, user-defined connection map (UDCM) for both computation time and bandwidth saving, and early stopping (ES) mechanism in learning process, the proposed system integrates 32 RBM cores with maximal 4k neurons per layer and 128 candidates per sample for machine learning applications. Implemented in 65nm CMOS technology', the proposed RBM-P chip costs 2.2M gates and 128kB SRAM with 8.8mm(2) area. Operated at 1.2V and 210MHz, this chip respectively achieves 114.3x and 3.9x faster processing time than CPU and GPGPU. And the proposed RBM-P chip consumes 41.3pJ and 26.7pJ per neuron weight (NW) for learning and inference, respectively.en_US
dc.language.isoen_USen_US
dc.subjectrestricted Boltzmann machine (RBM)en_US
dc.subjectmachine learningen_US
dc.subjectnon-linear functionsen_US
dc.subjectlow power designen_US
dc.titleA 41.3pJ/26.7pJ Per Neuron Weight RBM Processor for on-Chip Learning/Inference Applicationsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC)en_US
dc.citation.spage265en_US
dc.citation.epage268en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000401471500067en_US
Appears in Collections:Conferences Paper