完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Dongruien_US
dc.contributor.authorLawhern, Vernon J.en_US
dc.contributor.authorGordon, Stephenen_US
dc.contributor.authorLance, Brent J.en_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2018-08-21T05:56:45Z-
dc.date.available2018-08-21T05:56:45Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/146597-
dc.description.abstractEnsemble learning is a powerful approach to construct a strong learner from multiple base learners. The most popular way to aggregate an ensemble of classifiers is majority voting, which assigns a sample to the class that most base classifiers vote for. However, improved performance can be obtained by assigning weights to the base classifiers according to their accuracy. This paper proposes an agreement rate initialized maximum likelihood estimator (ARIMLE) to optimally fuse the base classifiers. ARIMLE first uses a simplified agreement rate method to estimate the classification accuracy of each base classifier from the unlabeled samples, then employs the accuracies to initialize a maximum likelihood estimator (MLE), and finally uses the expectation-maximization algorithm to refine the MLE. Extensive experiments on visually evoked potential classification in a brain-computer interface application show that ARIMLE outperforms majority voting, and also achieves better or comparable performance with several other state-of-the-art classifier combination approaches.en_US
dc.language.isoen_USen_US
dc.subjectBrain-computer interfaceen_US
dc.subjectclassificationen_US
dc.subjectEEGen_US
dc.subjectensemble learningen_US
dc.subjectmaximum likelihood estimatoren_US
dc.titleAgreement Rate Initialized Maximum Likelihood Estimator for Ensemble Classifier Aggregation and Its Application in Brain-Computer Interfaceen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)en_US
dc.citation.spage724en_US
dc.citation.epage729en_US
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000402634700111en_US
顯示於類別:會議論文