標題: | Donor-Acceptor Random Copolymers Based on a Ladder-Type Nonacyclic Unit: Synthesis, Characterization, and Photovoltaic Applications |
作者: | Chen, Chiu-Hsiang Cheng, Yen-Ju Chang, Chih-Yu Hsu, Chain-Shu 應用化學系 Department of Applied Chemistry |
公開日期: | 8-Nov-2011 |
摘要: | We have developed a ladder-type multifused thienyl-phenylene-thienylene-phenylene-thienyl (TPTPT) unit where each thiophene ring is covalently fastened with the adjacent benzene rings by a carbon bridge, forming four cyclopentadiene rings embedded in a nonacyclic structure. This rigid and coplanar TPTPT building block was copolymerized with electron-deficient acceptors, dibromobenzothiadiazole (BT) or dibromodithienyldiketopyrrolopyrrole (DPP), via Stille polymerization. By varying the feed ratio of the monomers, a new series of random copolymers PTPTPTBT11, PTPTPTBT12, PTPTPTDPP11, PTPTPTDPP12, and PTPTPTDPP13 with tunable optical and electronic properties were prepared. The PTPTPTDPP12/PC(71)BM (1:4, w/w) based device exhibited the highest short circuit current (J(sc)) of 10.78 mA/cm(2) with a good power conversion efficiency (PCE) of 4.3% due to the much boarder absorption ability and the highest hole mobility of PTPTPTDPP12. The devices based on PTPTPTDPP13, PTPTPTDPP11, PTPTPTBT12, and PTPTPTBT11 polymers also displayed promising efficiencies of 4.1%, 3.6%, 3.1%, and 2.8%, respectively. Most importantly, PTPTPTDPP12 has been demonstrated as a superior low-band-gap material for polymer solar cell with inverted architecture, achieving a high PCE of 5.1%. |
URI: | http://dx.doi.org/10.1021/ma201824g http://hdl.handle.net/11536/14659 |
ISSN: | 0024-9297 |
DOI: | 10.1021/ma201824g |
期刊: | MACROMOLECULES |
Volume: | 44 |
Issue: | 21 |
起始頁: | 8415 |
結束頁: | 8424 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.