完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiao, Yen-Chinen_US
dc.contributor.authorHuang, Ching-Huien_US
dc.contributor.authorZeng, Clouden_US
dc.contributor.authorChang, Hsie-Chiaen_US
dc.date.accessioned2018-08-21T05:56:49Z-
dc.date.available2018-08-21T05:56:49Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn2330-7978en_US
dc.identifier.urihttp://hdl.handle.net/11536/146695-
dc.description.abstractThis paper investigates the feasibility of predicting the NAND flash decoding status by machine learning algorithms. The memory system can handle the future decoding failure in advance according to the prediction results so that to relieve the penalties. Several data preprocessing techniques to improve the accuracy are addressed. A thorough analysis flow is given and the experimental results show significant improvements. Incorporating with proper memory error handling schemes, a 34% improvement in throughput can be achieved.en_US
dc.language.isoen_USen_US
dc.titleData Analysis and Prediction for NAND Flash Decoding Statusen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 IEEE 9TH INTERNATIONAL MEMORY WORKSHOP (IMW)en_US
dc.citation.spage40en_US
dc.citation.epage43en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000405189200010en_US
顯示於類別:會議論文