完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Cheng-Hsienen_US
dc.contributor.authorYou, Chung-Longen_US
dc.contributor.authorChiang, Chen-Yuen_US
dc.contributor.authorWang, Yih-Ruen_US
dc.contributor.authorChen, Sin-Horngen_US
dc.date.accessioned2018-08-21T05:56:50Z-
dc.date.available2018-08-21T05:56:50Z-
dc.date.issued2016-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/146704-
dc.description.abstractIn this paper, rich prosodic information of spontaneous Mandarin speech is explored. The joint prosody labeling and modeling algorithm proposed previously for read speech is extended to spontaneous-speech prosody modeling by additionally considering the modeling of disfluency speech parts. It trains a hierarchical prosodic model and performs prosody labeling from a large speech corpus automatically. Rich prosodic information is then explored via analyzing model parameters and labeling results. By comparing the resulting prosodic model with that of read speech, we find that most affecting patterns, such as F0 contour patterns of 4 tones, have similar shapes or same trends but with much less dynamic ranges. Besides, the prosodic characteristics of various disfluency events, including repetition, restart, repair, contraction, and hesitation, are intensively investigated based on the labeling results. The information explored increases our knowledge about the phonology of spontaneous speech, and should be useful for assisting in ASR.en_US
dc.language.isoen_USen_US
dc.subjectprosodic informationen_US
dc.subjectprosody modelingen_US
dc.subjectprosody labelingen_US
dc.subjectspontaneous Mandarin speechen_US
dc.subjectdisfluency eventen_US
dc.titleRich Prosodic Information Exploration on Spontaneous Mandarin Speechen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 10TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP)en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000405610900005en_US
顯示於類別:會議論文