完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Yeh, Chao-Chun | en_US |
dc.contributor.author | Wang, Pang-Chieh | en_US |
dc.contributor.author | Pan, Yu-Hsuan | en_US |
dc.contributor.author | Kao, Ming-Chih | en_US |
dc.contributor.author | Huang, Shih-Kun | en_US |
dc.date.accessioned | 2018-08-21T05:56:51Z | - |
dc.date.available | 2018-08-21T05:56:51Z | - |
dc.date.issued | 2016-01-01 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/ICS.2016.68 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/146728 | - |
dc.description.abstract | The citizen considers that data source collecting by the government can be released for more diversity usage. However, to archive the open data dream, sensitive data potentially could be published after the proper privacy preserving processing. In this paper, we present a scalable privacy preserving system for open/big data which leverages K-anonymity algorithm and Hadoop framework. We use an experiment data (i.e., 10 TB) to show our system can handle the high-volume data when increasing the system resource. It is an essential factor for the Government to publish the data with privacy preserving processing. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | open data | en_US |
dc.subject | big data | en_US |
dc.subject | privacy preserving | en_US |
dc.subject | K-anonymity | en_US |
dc.title | A Scalable Privacy Preserving System for Open Data | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1109/ICS.2016.68 | en_US |
dc.identifier.journal | 2016 INTERNATIONAL COMPUTER SYMPOSIUM (ICS) | en_US |
dc.citation.spage | 312 | en_US |
dc.citation.epage | 317 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | 資訊技術服務中心 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.contributor.department | Information Technology Services Center | en_US |
dc.identifier.wosnumber | WOS:000406600300059 | en_US |
顯示於類別: | 會議論文 |