完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYeh, Chao-Chunen_US
dc.contributor.authorWang, Pang-Chiehen_US
dc.contributor.authorPan, Yu-Hsuanen_US
dc.contributor.authorKao, Ming-Chihen_US
dc.contributor.authorHuang, Shih-Kunen_US
dc.date.accessioned2018-08-21T05:56:51Z-
dc.date.available2018-08-21T05:56:51Z-
dc.date.issued2016-01-01en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICS.2016.68en_US
dc.identifier.urihttp://hdl.handle.net/11536/146728-
dc.description.abstractThe citizen considers that data source collecting by the government can be released for more diversity usage. However, to archive the open data dream, sensitive data potentially could be published after the proper privacy preserving processing. In this paper, we present a scalable privacy preserving system for open/big data which leverages K-anonymity algorithm and Hadoop framework. We use an experiment data (i.e., 10 TB) to show our system can handle the high-volume data when increasing the system resource. It is an essential factor for the Government to publish the data with privacy preserving processing.en_US
dc.language.isoen_USen_US
dc.subjectopen dataen_US
dc.subjectbig dataen_US
dc.subjectprivacy preservingen_US
dc.subjectK-anonymityen_US
dc.titleA Scalable Privacy Preserving System for Open Dataen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICS.2016.68en_US
dc.identifier.journal2016 INTERNATIONAL COMPUTER SYMPOSIUM (ICS)en_US
dc.citation.spage312en_US
dc.citation.epage317en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department資訊技術服務中心zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentInformation Technology Services Centeren_US
dc.identifier.wosnumberWOS:000406600300059en_US
顯示於類別:會議論文