Full metadata record
DC FieldValueLanguage
dc.contributor.authorZao, John K.en_US
dc.contributor.authorGan, Tchin-Tzeen_US
dc.contributor.authorYou, Chun-Kaien_US
dc.contributor.authorMendez, Sergio Jose Rodriguezen_US
dc.contributor.authorYou, Chiehen_US
dc.contributor.authorChung, Cheng-Enen_US
dc.contributor.authorWang, Yu-Teen_US
dc.contributor.authorMullen, Timen_US
dc.contributor.authorKothe, Christianen_US
dc.contributor.authorHsiao, Ching-Tengen_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.date.accessioned2018-08-21T05:56:51Z-
dc.date.available2018-08-21T05:56:51Z-
dc.date.issued2016-01-01en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICS.2016.147en_US
dc.identifier.urihttp://hdl.handle.net/11536/146731-
dc.description.abstractA pilot system for performing real-time brain imaging in naturalistic environments have been developed using wireless EEG headsets, motion sensors, smart telephones and ubiquitous computing servers. This paper described its pervasive architecture and introduced its enabling technologies, which include machine-to-machine publish/subscribe protocols, interoperable data/meta-data formats, multi-tier fog/cloud computing infrastructure and semantic linked data web. A live demonstration of this system was first performed at the US Army Research Lab meeting in March 2013. An expanded system capable of supporting real-time brain state classification and continuous model calibration will soon be made available as a web services.en_US
dc.language.isoen_USen_US
dc.titlePervasive Neuroimaging with Fog Computing and Linked Dataen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICS.2016.147en_US
dc.identifier.journal2016 INTERNATIONAL COMPUTER SYMPOSIUM (ICS)en_US
dc.citation.spage719en_US
dc.citation.epage722en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000406600300134en_US
Appears in Collections:Conferences Paper