完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Chung-Chienen_US
dc.contributor.authorChi, Tai-Shihen_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2018-08-21T05:56:52Z-
dc.date.available2018-08-21T05:56:52Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn2308-457Xen_US
dc.identifier.urihttp://dx.doi.org/10.21437/Interspeech.2016-415en_US
dc.identifier.urihttp://hdl.handle.net/11536/146771-
dc.description.abstractThis paper proposes a discriminative layered nonnegative matrix factorization (DL-NMF) for monaural speech separation. The standard NMF conducts the parts-based representation using a single-layer of bases which was recently upgraded to the layered NMF (L-NMF) where a tree of bases was estimated for multi-level or multi-aspect decomposition of a complex mixed signal. In this study, we develop the DL-NMF by extending the generative bases in L-NMF to the discriminative bases which are estimated according to a discriminative criterion. The discriminative criterion is conducted by optimizing the recovery of the mixed spectra from the separated spectra and minimizing the reconstruction errors between separated spectra and original source spectra. The experiments on single-channel speech separation show the superiority of DL-NMF to NMF and L-NMF in terms of the SDR, SIR and SAR measures.en_US
dc.language.isoen_USen_US
dc.subjectdictionary learningen_US
dc.subjectdiscriminative learningen_US
dc.subjectnonnegative matrix factorizationen_US
dc.subjectspeech separationen_US
dc.titleDiscriminative Layered Nonnegative Matrix Factorization for Speech Separationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.21437/Interspeech.2016-415en_US
dc.identifier.journal17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINESen_US
dc.citation.spage560en_US
dc.citation.epage564en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000409394400117en_US
顯示於類別:會議論文