完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, Ching-Yien_US
dc.contributor.authorHsieh, Min-Hsiuen_US
dc.contributor.authorLu, Hsiao-fengen_US
dc.date.accessioned2018-08-21T05:56:54Z-
dc.date.available2018-08-21T05:56:54Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn2475-420Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/146806-
dc.description.abstractIn this paper, we prove a MacWilliams identity for the weight adjacency matrices based on the constraint codes of a convolutional code (CC) and its dual. Our result improves upon a recent result by Gluesing-Luerssen and Schneider, where the requirement of a minimal encoder is assumed. We can also establish the MacWilliams identity for the input-parity weight adjacency matrices of a systematic CC and its dual. Most importantly, we show that a type of Hamming weight enumeration functions of all codewords of a CC can be derived from the weight adjacency matrix, which thus provides a connection between these two very different notions of weight enumeration functions in the convolutional code literature. Finally, the relations between various enumeration functions of a CC and its dual are summarized in a diagram. This explains why no MacWilliams identity exists for the free-distance enumerators.en_US
dc.language.isoen_USen_US
dc.titleA Complete MacWilliams Theorem for Convolutional Codesen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE INFORMATION THEORY WORKSHOP (ITW)en_US
dc.citation.spage157en_US
dc.citation.epage161en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000411449000032en_US
顯示於類別:會議論文