完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTseng, Huan-Hsinen_US
dc.contributor.authorEl Naqa, Issamen_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2018-08-21T05:56:55Z-
dc.date.available2018-08-21T05:56:55Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/146831-
dc.description.abstractStochastic neighbor embedding (SNE) aims to transform the observations in high-dimensional space into a low-dimensional space which preserves neighbor identities by minimizing the Kullback-Leibler divergence of the pairwise distributions between two spaces where Gaussian distributions are assumed. Data visualization could be improved by adopting the t-SNE where Student t distribution is used in the low-dimensional space. However, data pairs in the latent space are forced to be squeezed due to the loss of dimensions. This study incorporates the power-law distribution into construction of the p-SNE. Such an unsupervised p-SNE increases the physical forces in neighbor embedding so that the neighbors in the low-dimensional space can be adjusted flexibly to reflect the neighboring in the high-dimensional space. The experiments on three learning tasks illustrate that the manifold or data structure using the proposed p-SNE is preserved in better shape than that using SNE and t-SNE.en_US
dc.language.isoen_USen_US
dc.subjectManifold learningen_US
dc.subjectdimensionality reductionen_US
dc.subjectpower lawen_US
dc.subjectstochastic neighbor embeddingen_US
dc.subjectvisualizationen_US
dc.titlePOWER-LAW STOCHASTIC NEIGHBOR EMBEDDINGen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)en_US
dc.citation.spage2347en_US
dc.citation.epage2351en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000414286202105en_US
顯示於類別:會議論文