完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Tzu-Haoen_US
dc.contributor.authorHuang, Chunen_US
dc.contributor.authorChi, Tai-Shihen_US
dc.date.accessioned2018-08-21T05:56:55Z-
dc.date.available2018-08-21T05:56:55Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/146834-
dc.description.abstractHumans analyze sounds not only based on their frequency contents, but also on the temporal variations of the frequency contents. Inspired by auditory perception, we propose a deep neural network (DNN) based dereverberation algorithm in the rate domain, which presents the temporal variations of frequency contents, in this paper. We show convolutional noise in the time domain can be approximated to multiplicative noise in the rate domain. To remove the multiplicative noise, we adopt the rate-domain complex-valued ideal ratio mask (RDcIRM) as the training target of the DNN. Simulation results show that the proposed rate-domain DNN algorithm is more capable of recovering high-intelligible and high-quality speech from reverberant speech than the compared state-ofthe- art dereverberation algorithm. Hence, it is highly suitable for speech applications involving human listeners.en_US
dc.language.isoen_USen_US
dc.subjectDereverberationen_US
dc.subjectdeep neural networken_US
dc.subjectideal ratio masken_US
dc.subjectmodulation spectrumen_US
dc.titleDEREVERBERATION BASED ON BIN-WISE TEMPORAL VARIATIONS OF COMPLEX SPECTROGRAMen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)en_US
dc.citation.spage5635en_US
dc.citation.epage5639en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000414286205159en_US
顯示於類別:會議論文