完整後設資料紀錄
DC 欄位語言
dc.contributor.authorPoon, Sheung-Hungen_US
dc.contributor.authorWang, Wei-Linen_US
dc.date.accessioned2018-08-21T05:57:00Z-
dc.date.available2018-08-21T05:57:00Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-55911-7_37en_US
dc.identifier.urihttp://hdl.handle.net/11536/146929-
dc.description.abstractA total vertex cover is a vertex cover whose induced subgraph consists of a set of connected components, each of which contains at least two vertices. A t-total vertex cover is a total vertex cover where each component of its induced subgraph contains at least t vertices. The total vertex cover (TVC) problem and the t-total vertex cover (t-TVC) problem ask for the corresponding cover set with minimum cardinality, respectively. In this paper, we first show that the t-TVC problem is NP-complete for connected subcubic grid graphs of arbitrarily large girth. Next, we show that the t-TVC problem is NP-complete for 3-connected cubic planar graphs. Moreover, we show that the t-TVC problem is APX-complete for connected subcubic graphs of arbitrarily large girth.en_US
dc.language.isoen_USen_US
dc.titleOn Complexity of Total Vertex Cover on Subcubic Graphsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-55911-7_37en_US
dc.identifier.journalTHEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017)en_US
dc.citation.volume10185en_US
dc.citation.spage514en_US
dc.citation.epage527en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000425175500037en_US
顯示於類別:會議論文