完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Yi-Chiaen_US
dc.contributor.authorCheng, Yu-Daen_US
dc.contributor.authorWu, Cheng-Weien_US
dc.contributor.authorLai, Yueh-Tingen_US
dc.contributor.authorHu, Wan-Hsunen_US
dc.contributor.authorJeng, Jeu-Yihen_US
dc.contributor.authorTseng, Yu-Cheeen_US
dc.date.accessioned2018-08-21T05:57:03Z-
dc.date.available2018-08-21T05:57:03Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-57351-9_14en_US
dc.identifier.urihttp://hdl.handle.net/11536/146982-
dc.description.abstractThe purpose of time-dependent smart data pricing (abbreviated as TDP) is to relieve network congestion by offering network users different prices over varied periods. However, traditional TDP has not considered applying machine learning concepts in determining prices. In this paper, we propose a new framework for TDP based on machine learning concepts. We propose two different pricing algorithms, named TDP-TR (TDP based on Transition Rules) and TDP-KNN (TDP based on K-Nearest Neighbors). TDP-TR determines prices based on users' past willingness to pay given different prices, while TDP-KNN determines prices based on the similarity of users' past network usages. The main merit of TDP-TR is low computational cost, while that of TDP-KNN is low maintenance cost. Experimental results on simulated datasets show that the proposed algorithms have good performance and profitability.en_US
dc.language.isoen_USen_US
dc.subjectK-nearest neighboren_US
dc.subjectMachine learningen_US
dc.subjectNetwork congestion managementen_US
dc.subjectSmart data pricingen_US
dc.titleTime-Dependent Smart Data Pricing Based on Machine Learningen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-57351-9_14en_US
dc.identifier.journalADVANCES IN ARTIFICIAL INTELLIGENCE, CANADIAN AI 2017en_US
dc.citation.volume10233en_US
dc.citation.spage103en_US
dc.citation.epage108en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000426181700014en_US
顯示於類別:會議論文