完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, Ling-Hua | en_US |
dc.contributor.author | Wangl, Carol | en_US |
dc.contributor.author | Chen, Po-Ning | en_US |
dc.contributor.author | Hant, Yunghsiang S. | en_US |
dc.contributor.author | Tang, Vincent Y. F. | en_US |
dc.date.accessioned | 2018-08-21T05:57:05Z | - |
dc.date.available | 2018-08-21T05:57:05Z | - |
dc.date.issued | 2017-01-01 | en_US |
dc.identifier.issn | 2475-420X | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/147037 | - |
dc.description.abstract | In this paper, an exact distance spectrum formula for the largest minimum Hamming distance of finite-length binary block codes is presented. The exact formula indicates that the largest minimum distance of finite-length block codes can be fully characterized by the information spectrum of the Hamming distance between two independent and identically distributed (i.i.d.) random codewords. The distance property of finite-length block codes is then connected to the distance spectrum. A side result of this work is a new lower bound to the largest minimum distance of finite-length block codes. Numerical examinations show that the new lower bound improves the finite-length Gilbert-Varshamov lower bound and can reach the minimum distance of existing finite-length block codes. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Distance Spectrum Formula for the Largest Minimum Hamming Distance of Finite-Length Binary Block Codes | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2017 IEEE INFORMATION THEORY WORKSHOP (ITW) | en_US |
dc.citation.spage | 419 | en_US |
dc.citation.epage | 423 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | 電信工程研究所 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.contributor.department | Institute of Communications Engineering | en_US |
dc.identifier.wosnumber | WOS:000426901500085 | en_US |
顯示於類別: | 會議論文 |