完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSong, Ruiyangen_US
dc.contributor.authorRini, Stefanoen_US
dc.contributor.authorKipnis, Alonen_US
dc.contributor.authorGoldsmith, Andrea J.en_US
dc.date.accessioned2018-08-21T05:57:05Z-
dc.date.available2018-08-21T05:57:05Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn2475-420Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/147039-
dc.description.abstractWe consider the remote vector source coding problem in which a vector Gaussian source is estimated from noisy linear measurements. For this problem, we derive the performance of the compress-and-estimate (CE) coding scheme and compare it to the optimal performance. In the CE coding scheme, the remote encoder compresses the noisy source observations so as to minimize a local distortion measure, independent from the joint distribution between the source and the observations. In reconstruction, the decoder, having full knowledge of the joint distribution of the source and observations, estimates the original source realization from the lossy-compressed noisy observations. For the CE scheme in the vector Gaussian case, we show that, if the code rate is less than a specific threshold, then the CE coding scheme attains the same performance as the optimal coding scheme. For code rates above this threshold, we introduce lower and upper bounds on the performance gap between the CE and the optimal scheme. The case of a two-dimensional Gaussian source observed through two noisy measurements is studied to illustrate the behavior of the performance gap.en_US
dc.language.isoen_USen_US
dc.titleCompress-and-Estimate Source Coding for a Vector Gaussian Sourceen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 IEEE INFORMATION THEORY WORKSHOP (ITW)en_US
dc.citation.spage539en_US
dc.citation.epage543en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000426901500109en_US
顯示於類別:會議論文