完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chiu-Kuoen_US
dc.contributor.authorFang, Wai-Chien_US
dc.date.accessioned2018-08-21T05:57:10Z-
dc.date.available2018-08-21T05:57:10Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn1094-687Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/147128-
dc.description.abstractThis paper presents a reliable brain-computer interface (BCI) based on a steady-state visually evoked potential (SSEVP) method using online recursive independent component analysis (ORICA) with denoising. The proposed system includes a visual stimulator, a front-end data acquisition module, an ORICA module, a power spectrum density (PSD)-based noise channel detection module, a denoising module, and an EEG reconstruction module, and a detection module using canonical correlation analysis (CCA). The system with the proposed PSD-based denoising mechanism is simulated using test patterns of 9-Hz and 10-Hz SSEVP-based EEG raw data stream with an 8-second sliding window length with a 1-second step size under the condition of 128 Hz sampling rate. The accuracy of the detection is approximately 88% and 95% hit rate for 9-Hz and 10-Hz test patterns, respectively.en_US
dc.language.isoen_USen_US
dc.titleA Reliable Brain-Computer Interface Based on SSVEP Using Online Recursive Independent Component Analysisen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)en_US
dc.citation.spage2798en_US
dc.citation.epage2801en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000427085303059en_US
顯示於類別:會議論文