完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Min-Jenen_US
dc.contributor.authorYuadi, Imamen_US
dc.contributor.authorYin, Jin-Shengen_US
dc.contributor.authorTao, Yu-Hanen_US
dc.date.accessioned2018-08-21T05:57:11Z-
dc.date.available2018-08-21T05:57:11Z-
dc.date.issued2017-01-01en_US
dc.identifier.urihttp://dx.doi.org/10.1109/CIC.2017.00019en_US
dc.identifier.urihttp://hdl.handle.net/11536/147152-
dc.description.abstractTechnological advances in digitization with a variety of image manipulation techniques enable the creation of printed documents illegally. Correspondingly, many researchers conduct studies in determining whether the document printed counterfeit or original. This study examines the several statistical feature sets from Gray Level Co-occurrence Matrix (GLCM), Discrete Wavelet Transform (DWT), Spatial filters, Wiener filter, Gabor filter, Haralick and fractal filters to identify text and image document by using support vector machine (SVM) and decision fusion of feature selection. The average experimental results achieves that the image document is higher identification rate than text document. In summary, the proposed method outperforms the previous researches and it is a promising technique that can be implemented in real forensics for printed documents.en_US
dc.language.isoen_USen_US
dc.subjectForensicsen_US
dc.subjectGLCMen_US
dc.subjectDiscrete Wavelet Transform (DWT)en_US
dc.subjectSupport Vector Machines (SVM)en_US
dc.subjectSpatial Filteren_US
dc.subjectWiener Filteren_US
dc.subjectGabor Filteren_US
dc.subjectHaralick Filteren_US
dc.subjectFractal Filteren_US
dc.titleSource Identification for Printed Documentsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/CIC.2017.00019en_US
dc.identifier.journal2017 IEEE 3RD INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC)en_US
dc.citation.spage54en_US
dc.citation.epage58en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000427508000008en_US
顯示於類別:會議論文