完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWibisono, Jan Kristantoen_US
dc.contributor.authorHang, Hsueh-Mingen_US
dc.date.accessioned2018-08-21T05:57:14Z-
dc.date.available2018-08-21T05:57:14Z-
dc.date.issued2017-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/147198-
dc.description.abstractIn the past a few decades, many schemes have been proposed for segmenting a color image into meaningful regions. However, the newly availability of depth data provides opportunities to explore and improve the image segmentation performance. In addition, the new image processing tools based on deep learning technology are aggressively developed recently. This paper proposes a method of combining color and depth data to segment an image. As an initial stage, we partition a color image into regions using the DeepEdge tool, an image edge detection scheme developed based on the CNN (Convolutional Neural Net) technique. Then, we use the RANSAC tool to identify and merge regions with similar planar geometry (based on the depth information). At the final stage, guided by the DeepEdge information, a region merging method is employed to fine-tune the merged regions based on the color and depth similarity. Comparing to our previous results, the DeepEdge method together with the depth information helps in improving the segmentation result in most cases.en_US
dc.language.isoen_USen_US
dc.subjectRGBD Segmentationen_US
dc.subjectDeepEdgeen_US
dc.subjectRANSACen_US
dc.titleRGBD IMAGE SEGMENTATION USING DEEP EDGEen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017)en_US
dc.citation.spage565en_US
dc.citation.epage569en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000428142000108en_US
顯示於類別:會議論文