Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantoso, Patrisia Sherrylen_US
dc.contributor.authorHang, Hsueh-Mingen_US
dc.date.accessioned2018-08-21T05:57:14Z-
dc.date.available2018-08-21T05:57:14Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/147216-
dc.description.abstractAccurate human detection is still a challenging topic due to complicated environments in the real world. In addition, the RGB-D cameras are becoming popular at reasonable price, such as Microsoft Kinect sensor, which provides both RGB and depth data. The depth information often helpful for detection. We adopt the R-CNN method in this paper, which combines the Selective Search technique to generate region proposals and the CNNs (Convolutional Neural Networks) to learn features. A depth map encoding technique (HHA) is adopted to match the CNNs format for learning features. The HHA and RGB images are our inputs. We propose several algorithms to combine their information in constructing various human detectors. Our information fusion structures include CNN, SVM together with PCA for features reduction. More accurate human detection results are shown with the aid of depth information.en_US
dc.language.isoen_USen_US
dc.subjectHuman Detectionen_US
dc.subjectCNNsen_US
dc.subjectdepth mapen_US
dc.subjectHHA depth encodingen_US
dc.subjectRGB-D fusionen_US
dc.titleLEARNING-BASED HUMAN DETECTION APPLIED TO RGB-D IMAGESen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage3365en_US
dc.citation.epage3369en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000428410703099en_US
Appears in Collections:Conferences Paper