Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Ming-Chia | en_US |
dc.date.accessioned | 2019-04-02T06:01:05Z | - |
dc.date.available | 2019-04-02T06:01:05Z | - |
dc.date.issued | 2014-05-01 | en_US |
dc.identifier.issn | 0002-9890 | en_US |
dc.identifier.uri | http://dx.doi.org/10.4169/amer.math.monthly.121.05.445 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/147678 | - |
dc.description.abstract | We give an elementary proof of a generalization of Banach's mapping theorem, which says that for any two mappings f : A -> B and g : B -> A, there exists a subset A(0) of A such that g(B\f (A(0))) = A\A(0). | en_US |
dc.language.iso | en_US | en_US |
dc.title | An Elementary Proof of a Generalization of Banach's Mapping Theorem | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.4169/amer.math.monthly.121.05.445 | en_US |
dc.identifier.journal | AMERICAN MATHEMATICAL MONTHLY | en_US |
dc.citation.volume | 121 | en_US |
dc.citation.spage | 445 | en_US |
dc.citation.epage | 446 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000334650000010 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |