Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, Chi Hin | en_US |
dc.contributor.author | Czubak, Magdalena | en_US |
dc.contributor.author | Yoneda, Tsuyoshi | en_US |
dc.date.accessioned | 2019-04-02T06:00:45Z | - |
dc.date.available | 2019-04-02T06:00:45Z | - |
dc.date.issued | 2014-07-15 | en_US |
dc.identifier.issn | 0167-2789 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.physd.2014.05.004 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/147744 | - |
dc.description.abstract | Ma and Wang derived an equation linking the separation location and times for the boundary layer separation of incompressible fluid flows. The equation gave a necessary condition for the separation (bifurcation) point. The purpose of this paper is to generalize the equation to other geometries, and to phrase it as a simple ODE. Moreover we consider the Navier-Stokes equation with the Coriolis effect, which is related to the presence of trade winds on Earth. (C) 2014 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Navier-Stokes equation | en_US |
dc.subject | Riemannian manifolds | en_US |
dc.subject | Boundary layer separation | en_US |
dc.subject | Coriolis effect | en_US |
dc.title | An ODE for boundary layer separation on a sphere and a hyperbolic space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.physd.2014.05.004 | en_US |
dc.identifier.journal | PHYSICA D-NONLINEAR PHENOMENA | en_US |
dc.citation.volume | 282 | en_US |
dc.citation.spage | 34 | en_US |
dc.citation.epage | 38 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000339146300004 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |