完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHaas, Kevin R.en_US
dc.contributor.authorYang, Hawen_US
dc.contributor.authorChu, Jhih-Weien_US
dc.date.accessioned2019-04-02T06:00:44Z-
dc.date.available2019-04-02T06:00:44Z-
dc.date.issued2014-07-17en_US
dc.identifier.issn1520-6106en_US
dc.identifier.urihttp://dx.doi.org/10.1021/jp501133wen_US
dc.identifier.urihttp://hdl.handle.net/11536/147750-
dc.description.abstractThe analytical expression for the trajectory entropy of the overdamped Langevin equation is derived via two approaches. The first route goes through the Fokker-Planck equation that governs the propagation of the conditional probability density, while the second method goes through the path integral of the Onsager-Machlup action. The agreement of these two approaches in the continuum limit underscores the equivalence between the partial differential equation and the path integral formulations for stochastic processes in the context of trajectory entropy. The values obtained using the analytical expression are also compared with those calculated with numerical solutions for arbitrary time resolutions of the trajectory. Quantitative agreement is clearly observed consistently across different models as the time interval between snapshots in the trajectories decreases. Furthermore, analysis of different scenarios illustrates how the deterministic and stochastic forces in the Langevin equation contribute to the variation in dynamics measured by the trajectory entropy.en_US
dc.language.isoen_USen_US
dc.titleAnalysis of Trajectory Entropy for Continuous Stochastic Processes at Equilibriumen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/jp501133wen_US
dc.identifier.journalJOURNAL OF PHYSICAL CHEMISTRY Ben_US
dc.citation.volume118en_US
dc.citation.spage8099en_US
dc.citation.epage8107en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000339368800047en_US
dc.citation.woscount5en_US
顯示於類別:期刊論文