Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, G. -Y.en_US
dc.contributor.authorZhang, H.en_US
dc.contributor.authorTan, S. -L.en_US
dc.contributor.authorZhang, P. -X.en_US
dc.contributor.authorTseng, T. -Y.en_US
dc.contributor.authorHabermeier, H. -U.en_US
dc.contributor.authorLin, C. -T.en_US
dc.contributor.authorSingjai, P.en_US
dc.date.accessioned2019-04-02T06:00:07Z-
dc.date.available2019-04-02T06:00:07Z-
dc.date.issued2014-09-01en_US
dc.identifier.issn0947-8396en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00339-014-8335-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/147793-
dc.description.abstractStrongly correlated electronic (SCE) materials including high-temperature superconducting cuprate and colossal magnetoresistance manganite thin films demonstrate tremendous anisotropic Seebeck effect which makes them very promising for developing high-performance laser detectors. In this work, laser-induced thermoelectric voltage (LITV) signals with nanosecond response time have been measured in SCE La1-xPbxMnO3 thin films based on anisotropic Seebeck effect at room temperature. The magnitude of the LITV signals increases linearly with laser energy/power density in a wide range of laser wavelengths from ultraviolet, visible to infrared based on which a novel SCE thin-film laser energy/power meter has been developed.en_US
dc.language.isoen_USen_US
dc.titleA novel strongly correlated electronic thin-film laser energy/power meter based on anisotropic Seebeck effecten_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00339-014-8335-1en_US
dc.identifier.journalAPPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSINGen_US
dc.citation.volume116en_US
dc.citation.spage1033en_US
dc.citation.epage1039en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000340583500023en_US
dc.citation.woscount3en_US
Appears in Collections:Articles