Full metadata record
DC FieldValueLanguage
dc.contributor.authorShapiro, B. Yaen_US
dc.contributor.authorShapiro, I.en_US
dc.contributor.authorLi, Dingpingen_US
dc.contributor.authorRosenstein, Baruchen_US
dc.date.accessioned2019-04-02T05:59:36Z-
dc.date.available2019-04-02T05:59:36Z-
dc.date.issued2018-08-22en_US
dc.identifier.issn0953-8984en_US
dc.identifier.urihttp://dx.doi.org/10.1088/1361-648X/aad305en_US
dc.identifier.urihttp://hdl.handle.net/11536/147923-
dc.description.abstractSuperconductivity of the second kind was observed in many 3D Weyl and Dirac semi-metals while in the PdTe2, superconductivity is clearly of the first kind. This is very rare in Dirac semi-metals, but is expected in clean conventional metallic superconductors with 3D parabolic dispersion relation. The conduction bands in this material exhibit the linear (Dirac) dispersion only along two directions, while in the third direction the dispersion is parabolic. Therefore the 'hybrid' Dirac-parabolic material is intermediate between the two extremes. A microscopic pairing theory is derived for arbitrary tilt parameter of the 2D cone and used to determine anisotropic coherence lengths, the penetration depths and applied to recent extensive experiments. Magnetic properties of these superconductors are then studied in the parallel to the layers magnetic field on the basis of microscopically derived Ginzburg-Landau effective theory for the order parameter.en_US
dc.language.isoen_USen_US
dc.subjectDirac semi-metalsen_US
dc.subjectmagnetic properties of superconductorsen_US
dc.subjectGinzburg Landau theoryen_US
dc.titleType I superconductivity in Dirac materialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1361-648X/aad305en_US
dc.identifier.journalJOURNAL OF PHYSICS-CONDENSED MATTERen_US
dc.citation.volume30en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000440050800002en_US
dc.citation.woscount0en_US
Appears in Collections:Articles