完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Tolyen_US
dc.date.accessioned2019-04-02T05:59:35Z-
dc.date.available2019-04-02T05:59:35Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn1868-5137en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12652-017-0504-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/147930-
dc.description.abstractMost methods for fitting an uncertain yield learning process involve using fuzzy logic and solving mathematical programming (MP) problems, and thus have several drawbacks. The present study proposed a novel fuzzy and artificial neural network (ANN) approach for overcoming these drawbacks. In the proposed methodology, an ANN is used instead of an MP model to facilitate generating feasible solutions. A two-stage procedure is established to train the ANN. The proposed methodology and several existing methods were applied to a real case in a semiconductor manufacturing factory, and the experimental results showed that the methodology outperformed the existing methods in the overall forecasting performance.en_US
dc.language.isoen_USen_US
dc.subjectYielden_US
dc.subjectLearningen_US
dc.subjectSemiconductoren_US
dc.subjectFuzzyen_US
dc.subjectArtificial neural networken_US
dc.titleAn innovative fuzzy and artificial neural network approach for forecasting yield under an uncertain learning environmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12652-017-0504-6en_US
dc.identifier.journalJOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTINGen_US
dc.citation.volume9en_US
dc.citation.spage1013en_US
dc.citation.epage1025en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000440310900009en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文