Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Ting-Hengen_US
dc.contributor.authorChung, Chieh-Hsuanen_US
dc.contributor.authorChung, Feng-Juen_US
dc.contributor.authorChang, Chun-Cheen_US
dc.contributor.authorLu, Ming-Changen_US
dc.contributor.authorChueh, Yu-Lunen_US
dc.date.accessioned2019-04-02T05:59:31Z-
dc.date.available2019-04-02T05:59:31Z-
dc.date.issued2018-09-01en_US
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.nanoen.2018.06.021en_US
dc.identifier.urihttp://hdl.handle.net/11536/147949-
dc.description.abstractThermal hysteresis (TH) is defined as the temperature difference between the melting points and crystallization temperatures of phase-change materials (PCMs). The magnitude of the TH is proportional to the energy loss in a system. In addition, the latent heats of the PCMs cannot be exploited if the TH is beyond the operation temperature range of a system. In this study, Zn/TiO2, Zn/Al2O3, and Zn/SiO2 core-shell microparticles were synthesized and the TH values of the microparticles were examined. The TH for the microparticles was mainly affected by the ramping rate in differential scanning calorimetry, the shell thermal resistance and the required temperature for heterogeneous nucleation. Given that Al2O3 possesses a superior thermal conductivity than that of TiO2 and SiO2, the Zn/Al2O3 core-shell microparticles provided the smallest TH among the three types of microparticles. The heat capacity of the salt can be enhanced by 6.7% by doping with 10 wt% Zn/Al2O3 microparticles while the viscosity increased from 1.3 to 3 cp. The study provided guidelines to modulate the TH of PCMs, and the concept learned from this study can be applied to enhancing the thermal energy storage in various thermal systems.en_US
dc.language.isoen_USen_US
dc.subjectThermal hysteresisen_US
dc.subjectCore-shell microparticlesen_US
dc.subjectViscosityen_US
dc.subjectPhase-change materialsen_US
dc.titleThermal hysteresis in phase-change materials: Encapsulated metal alloy core-shell microparticlesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.nanoen.2018.06.021en_US
dc.identifier.journalNANO ENERGYen_US
dc.citation.volume51en_US
dc.citation.spage563en_US
dc.citation.epage570en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000440682100062en_US
dc.citation.woscount0en_US
Appears in Collections:Articles