Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Fang-Juen_US
dc.contributor.authorChuang, Jen-Huien_US
dc.date.accessioned2019-04-02T05:59:31Z-
dc.date.available2019-04-02T05:59:31Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn1380-7501en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11042-017-5350-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/147950-
dc.description.abstractImage super-resolution (SR) is the process of generating a high-resolution (HR) image using one or more low-resolution (LR) inputs. Many SR methods have been proposed, but generating the small-scale structure of an SR image remains a challenging task. We hence propose a single-image SR algorithm that combines the benefits of both internal and external SR methods. First, we estimate the enhancement weights of each LR-HR image patch pair. Next, we multiply each patch by the estimated enhancement weight to generate an initial SR patch. We then employ a method to recover the missing information from the high-resolution patches and create that missing information to generate a final SR image. We then employ iterative back-projection to further enhance visual quality. The method is compared qualitatively and quantitatively with several state-of-the-art methods, and the experimental results indicate that the proposed framework provides high contrast and better visual quality, particularly for non-smooth texture areas.en_US
dc.language.isoen_USen_US
dc.subjectImage super-resolutionen_US
dc.subjectEnhancement weighten_US
dc.subjectPatch clusteringen_US
dc.subjectExternal superresolutionen_US
dc.titleImage super-resolution by estimating the enhancement weight of self example and external missing patchesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11042-017-5350-1en_US
dc.identifier.journalMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.citation.volume77en_US
dc.citation.spage19071en_US
dc.citation.epage19087en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000440703500009en_US
dc.citation.woscount0en_US
Appears in Collections:Articles